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Density scatter plots between observed and estimated Ta for the EPC method and the method in the literature.
A B S T R A C T
A R T I C L E I N F O
Editor: Pavlos Kassomenos
 Air temperature (Ta) data obtained frommeteorological stationswere spatially discontinuous. Some satellite data have
complete spatial coverage and strong relationships with Ta (e.g., elevation and land surface temperature). Therefore,
Ta can bemapped using in situ Ta and satellite data. However, this method may have a large bias when estimating the
extreme Ta. In this study, the error prediction and correction (EPC) method, incorporating Cubist machine learning
algorithm, was proposed to improve the estimation of extreme Ta. The accuracy of the EPC method was compared
with that of the widely used method in previous studies in east China from 2003 to 2012. The mean absolute errors
(MAEs) of the estimated daily Ta using the EPC method ranged from 0.75–1.01 °C, which were 0.57–0.96 °C lower
than that of the method in the literature. The biases of the estimated Ta obtained using the two methods were close
to zero. However, the biases can be as high as 7.10 °C when Ta is extremely low and as low as −3.09 °C when Ta is
extremely high. Compared with the method in the literature, the EPC method can reduce the MAE by 1.41 °C, root
mean square error by 1.49 °C, and bias by 1.61 °C of the estimated extreme Ta. Additionally, the EPCmethod produced
satisfactory accuracy (MAEs <0.9 °C) of the estimated heat and cold wavemagnitudes. Finally, a 1 km resolution daily
Ta map in east China from 2003 to 2012 was developed, which will be useful data in multiple research fields.
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1. Introduction

Air temperature (Ta) is a key variable in many research fields such as
climate change (Huang et al., 2017; Sun et al., 2016), environmental sci-
ence (Anniballe et al., 2014; Du et al., 2021), and agriculture and forestry
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(Liu et al., 2020; Zhang et al., 2017). It is traditionally measured using me-
teorological stations at 2 m above ground. However, meteorological sta-
tions are sparsely and unevenly distributed, limiting their application. For
example, monitoring Ta variations in mountainous and remote regions is
difficult because of the sparse distribution of meteorological stations in
these areas (Meyer et al., 2016; Rao et al., 2019; Vancutsem et al., 2010).
Additionally, because most meteorological stations are located in urban
and their surrounding areas, accurately revealing the regional warming
trend (Ren and Zhou, 2014; Sun et al., 2016; Wang et al., 2015) and
urban heat island effect (Yao et al., 2021a; Zhou et al., 2019) is difficult.

Some satellite data are spatially continuous and have strong relation-
shipswith Ta (e.g., elevation and land surface temperature (Ts)). Therefore,
Ta can be mapped using in situ Ta data and satellite variables from local to
global scales (Benali et al., 2012; Hrisko et al., 2020; Kloog et al., 2014; Li
et al., 2018; Rao et al., 2019; Shen et al., 2020; Vancutsem et al., 2010;
Yoo et al., 2018; Zhang et al., 2016; Zhu et al., 2017). For example, Yoo
et al. (2018) used a random forest model to estimate the daily maximum
and minimum Ta (Tmax and Tmin) in Los Angeles and Seoul from 2006
to 2016. The root mean square errors (RMSEs) of the estimated Tmax and
Tmin ranged from 1.1 to 1.7 °C. Hooker et al. (2018) developed the global
monthly mean Ta (Tmean) from 2003 to 2016 by geographically weighted
regressions and climate space weighted regressions. They found that the
RMSEs ranged from 1.14 to 1.55 °C. Estimated Ta data have been success-
fully used to analyze climate change (Li and Zha, 2019b), the urban heat is-
land effect (Yao et al., 2021a), crop growth (Zhang et al., 2013), and disease
transmission (Weiss et al., 2014).

In many previous studies, we found an interesting phenomenon: the
slopes of the fitting lines were generally lower than 1 when the observed
and estimated Ta were used as the x-axis and y-axis, respectively (Fig. 1)
(Chen et al., 2016; Didari et al., 2016; Didari and Zand-Parsa, 2018;
Janatian et al., 2017; Jang et al., 2014; Li and Zha, 2019a; Li and Zha,
2019b; Lu et al., 2018; Peón et al., 2014; Yang et al., 2017; Yoo et al.,
2018; Zhang et al., 2021; Zou et al., 2021). The slope of the fitting line
lower than 1 suggests that: (1) the extremely low Ta is generally
overestimated and that (2) the extremely high Ta is normally
underestimated (Fig. 1). It suggested that the estimated Ta is conservative.
For example, Janatian et al. (2017) used multiple linear regression to esti-
mate daily and weekly Ta in Iran from 2000 to 2004. The slopes of the
fitting lines ranged from 0.728 to 0.930. Li and Zha (2019b) used a random
forest model to estimatemonthlymean Ta in China from 2001 to 2015. The
slope of the fitting line was 0.97. Lu et al. (2018) used a hierarchical Bayes-
ian model to estimate monthly mean Ta in northwestern China from 2003
to 2011. The slopes of the fitting lines were all lower than 1. These three
Fig. 1.Diagram of the observed and estimated air temperature (Ta). Note that this is
just a diagram, the data in this figure is artificially created.
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studies used different methods to estimate Ta. The temporal resolutions
of the estimated Ta in these three studies comprised day, week and
month. Additionally, this phenomenon also exists in other fields, for exam-
ple, estimating solar radiation (Wang et al., 2016; Qin et al., 2018; Feng
et al., 2020) and PM2.5 (Wei et al., 2020; Zhan et al., 2017; Xue et al.,
2019). For example, Wei et al. (2020) found that the slopes of the fitting
lines between observed and estimated PM2.5 were generally lower than
0.9, and PM2.5 was normally underestimated under highly polluted condi-
tions. They attributed this phenomenon to poor quality of aerosol optical
depth products and small number of samples for high-pollution cases.
Therefore, this phenomenon is widespread. The conservative estimation
of Ta leads to uncertainty when the estimated Ta is used for research, espe-
cially in fields related to extreme Ta (e.g., spatiotemporal variations in ex-
treme Ta, and the effects of extreme Ta on human health and crop yield).
However, to our knowledge, few studies have specifically studied this phe-
nomenon and tried to improve this problem.

Therefore, this study aims to systematically discuss this phenomenon
and develop a method called error prediction and correction (EPC) to im-
prove the estimation of extreme Ta by satellite. Section 2 presents the
study area and data. Section 3 presents the methods for processing the
data, and estimating and validating Ta. Section 4 presents the main results,
and Section 5 discusses the EPCmethod. Finally, Section 6 summarizes this
study.

2. Study area and data

East China is a relatively developed region with a high population
density (Fig. 2). Within this region are three major urban agglomerations
(Beijing-Tianjin-Hebei, Yangtze River Delta, and Pearl River Delta urban
agglomerations) in east China,making it a hot area for urbanization and cli-
mate research (Cao et al., 2018; Hu et al., 2019; Luo and Lau, 2018; Sun
et al., 2014; Yang et al., 2011; Zhao et al., 2014). Therefore, east China
was selected as the study area. East China contains 11 provinces (Hebei,
Henan, Shandong, Hubei, Jiangsu, Anhui, Zhejiang, Jiangxi, Hunan, Fujian
and Guangdong) and three municipalities (Beijing, Shanghai, and Tianjin).
The total area of east China is 1.77 million km2, and the total population is
882.1 million. The land cover type in east China is dominated by croplands
and forests (Fig. 2a). Finally, east China has a humid and semi-humid cli-
mate. Ta and precipitation gradually decrease from south to north in this
area (Liu et al., 2018).

Daily Tmean, Tmax and Tmin data from 2003 to 2012 were obtained
from the China Meteorological Information Center. Daily Tmean, Tmax
and Tmin were defined as daily mean, maximum and minimum Ta, respec-
tively. These data were homogenized by the method used in Xu et al.
(2013), and widely used in previous studies (Niu et al., 2019; Sun et al.,
2016; Zhu et al., 2019). East China had 1104 meteorological stations with
valid Ta data from 2003 to 2012 (Fig. 2b). Daytime and nighttime Ts infor-
mation was derived from Moderate Resolution Imaging Spectroradiometer
(MODIS) MOD11A1 and MYD11A1 data (version 6.1, daily product, 1 km
resolution, from 2003 to 2012). The accuracy of the Ts product has been
widely validated, and the errors are generally lower than 1 °C (Wan,
2008; Wan, 2014). MODIS Ts products have many gaps, especially for
daily Ts products. In this study, these gaps were filled using the enhanced
hybrid (EH) method in Yao et al. (2021b). The EH method fully uses
three types of information to fill the gaps, and has higher accuracy (mean
absolute errors (MAEs)< 1 °C for small gaps) than other gapfillingmethods.
In this study, Global multi-resolution terrain elevation data 2010
(GMTED2010) (Danielson and Gesch, 2011) was used to derive elevation
information. It has 1 km spatial resolution and 1 m vertical resolution,
and the accuracy (RMSE) of GMTED2010 is generally lower than 10 m
(Athmania and Achour, 2014; Khalid et al., 2016). 1 km resolution
MODIS MOD13A2 enhanced vegetation index, 500 m resolution topo-
graphic index (Marthews et al., 2015) and 30 m resolution China land
cover dataset (CLCD) (Yang and Huang, 2021) were used to derive vegeta-
tion greenness, topography and land cover information, respectively. Clear-
sky solar radiation, slope and aspect data with 1 km resolution were



Fig. 2. Study area. (a) Land covermap; (b) Elevationmap and spatial distribution ofmeteorological stations. The backgroundmap is China land cover dataset (CLCD) in 2012.

Table 1
Selection of predictor variables to estimate Ta.

Alternative variable MOD11A1 daytime and nighttime Ts, MYD11A1 daytime and
nighttime Ts, proportions of missing value during the daytime
and nighttime in Ts data, MOD13A2 enhanced vegetation
index, elevation, slope, aspect, topographic index, clear-sky
solar radiation, latitude, longitude, Julian day, year,
proportions of urban area and water body

Variables for Tmean
estimation

MOD11A1 nighttime Ts, elevation, latitude, longitude,
clear-sky solar radiation, Julian day and year

Variables for Tmax
estimation

Proportion of missing value during the daytime in Ts data,
elevation, latitude, longitude, clear-sky solar radiation, Julian
day and year

Variables for Tmin
estimation

MOD11A1 nighttime Ts, elevation, latitude, longitude,
clear-sky solar radiation, Julian day and year

Not used variables MOD11A1 daytime Ts, MYD11A1 daytime and nighttime Ts,
proportion of missing value during the nighttime in Ts data,
MOD13A2 enhanced vegetation index, slope, aspect,
topographic index, proportions of urban area and water bodies
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mapped using Area Solar Radiation, Slope and Aspect tools in ArcGIS soft-
ware, respectively. Latitude and longitude data with 1 km resolution were
extracted from MODIS Ts data.

3. Methods

3.1. Variable and model selection

Initially, 18 variables were used as alternatives to estimate Ta (Table 1).
Other data such as wind speed and humidity were not used to estimate Ta,
because it was difficult to obtain these data with a resolution of 1 km. The
daily proportion of missing values in daytime (nighttime) Ts data was cal-
culated using MOD11A1 and MYD11A1 daytime (nighttime) Ts data at
the pixel level. The role of this variable is to distinguish between clear
and cloudy skies. The 1 km resolution proportions of urban areas and
water bodies were mapped using 30 m resolution land cover data.

A simple forward variable selection method was used according to pre-
vious researches (Meyer et al., 2016; Xu et al., 2018; Yao et al., 2021a). This
method can retain the variables that have a positive effect on the Ta
3
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estimation, and remove the variables that have no positive effect. After
variable selection, seven variables were used to estimate Tmean, Tmax
and Tmin (Table 1). Other variables were not used to estimate Ta in
this study. It is worth noting that no Ts variables were used estimate
Tmax. This is mainly due to the relatively weak correlations between
Tmax and Ts. There is a large difference between Tmax and daytime
Ts, because daytime Ts is very sensitive to solar radiation and surface
characteristics (Yoo et al., 2018; Yao et al., 2021a). The correlation be-
tween Tmax and nighttime Ts is relatively weak, because the monitor-
ing time of Tmax and nighttime Ts is quite different. Therefore, other
variables may play more important roles in estimating Tmax, and Ts
variables were not retained in the final variable set. Cubist machine
learning algorithm (Quinlan, 1992) was used to estimate Ta, since
previous researches showed that it has higher accuracy than other ma-
chine learning algorithms (including random forest, support vector
Fig. 3. Diagram of the error prediction and correction (EPC) method. Tn: nighttim
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regression, etc.), multiple linear regression and partial least squares re-
gression (Noi et al., 2017; Xu et al., 2018; Zhang et al., 2016).

3.2. Ta estimation

The Ta estimationmethod used in the previous literature is described as
follows. First, the values of some variables (e.g., Ts, proportion of missing
values during the daytime in Ts, and clear-sky solar radiation) correspond-
ing to the location of meteorological stations are extracted. Other variables
accompanied by Ta data can be used directly (e.g., elevation, latitude, lon-
gitude, Julian day, and year). Second, Ta (dependent variable) and the ac-
companying independent variables were input into the model (machine
learning, linear regression, or other models), and the relationship between
Ta and independent variables was fit. Subsequently, gridded Ta data were
developed using the fitted relationship and gridded independent variable
e Ts. SR: clear-sky solar radiation. Lat: latitude. Lon: longitude. Ele: elevation.
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data (Gao et al., 2021; Hereher and El Kenawy, 2020; Li and Zha, 2019a;
Rosenfeld et al., 2017).

This study proposes the EPC method to estimate Ta and compares it
with the aforementioned method used in the literature. The diagram of
the EPC method is shown in Fig. 3. The EPC method comprises six steps:

(1) Data preparation. This step is the same as in the first step of the method
in the literature. Ta and the accompanying independent variable data
were prepared.

(2) Sample segmentation. All samples (approximately 4 million) were di-
vided into 12 subsets bymonth. The relationship between Ta and inde-
pendent variables was fitted, and Ta was predicted by month. This
strategy is used because the relationship between Ta and independent
variables differed substantially by month (Yao et al., 2020).

(3) Error acquisition. The leave-station-out 10-fold cross-validation
method was performed as follows: All meteorological stations
Fig. 4.Density scatter plots between observed and estimated Ta for the EPCmethod and
daily minimum Ta.
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were divided into ten subsets. Next, samples from nine subsets of
meteorological stations were input into the Cubist model, and sam-
ples from the remaining one subset of meteorological stations were
used for validation. Subsequently, this procedure was repeated,
and all ten subsets were used to validate in turn. Therefore, all sam-
ples will have the observed and estimated Ta. Finally, the error of
each sample can be calculated as the estimated Ta minus the
observed Ta:

Error1 ¼ Ta � e1 � Ta � o (1)

where Ta−e1 and Ta−o are the estimated and observed values of Ta, respec-
tively. Error1 represents the error of the sample.

(4) Fitting. The error and the independent variables were input into the
Cubist model, and the relationship between the error and the
the method in the literature. Tmean: daily mean Ta. Tmax: daily maximumTa. Tmin:
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independent variables was fitted. Similarly, the relationship between
Ta and the independent variables was also fitted.

Ta � o ¼ f 1 Tn, SR, Lat,Lon,Ele, year, Julian dayð Þ (2)

Error1 ¼ f 2 Tn, SR,Lat, Lon,Ele, year, Julian dayð Þ (3)

where Tn represents nighttime Ts (when estimating Tmean and Tmin) or
the proportion of missing values during the daytime in Ts data (when esti-
mating Tmax). SR, Lat, Lon, and Ele represent clear-sky solar radiation, lat-
itude, longitude and elevation, respectively.

(5) Error and Ta prediction. The 1 km resolution error map was developed
using the fitted relationship between the error and the independent
variables, and the 1 km resolution independent variables. Similarly,
the 1 km resolution original Ta map was developed using the fitted re-
lationship between Ta and the independent variables, and the 1 km res-
olution independent variables.

(6) Final Ta estimation. The final Ta map can be calculated as the original
Ta map minus the error map:

Ta � e3 ¼ Ta � e2 � Error2 (4)

where Ta−e3 and Ta−e2 are the final and original Ta maps, respectively.
Error2 is an error map.

3.3. Ta validation

Accuracies of the EPCmethod and themethod in the literature were val-
idated using a ten-fold cross-validation method. The validation procedures
Fig. 5.Mean absolute error (MAE), root mean square error (RMSE), coefficient of determ
literature by month.
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of the EPC method are described as follows: First, as in steps (1) and (2) of
the EPC method, all samples were prepared and divided into 12 subsets by
month. Second, all samples in one month were divided into ten subsets.
Third, Steps (3)–(6) of the EPCmethod were performed using nine subsets,
and the remaining subset was used for validation. This procedure was re-
peated, and all ten subsets were used for validation. The MAE, RMSE, coef-
ficient of determination (R2), and bias were calculated using all the samples
to describe the accuracy.

3.4. Analyzing the accuracy of the estimated extreme ta

Three parts of the experiments were conducted to analyze the accu-
racy of the estimated extreme Ta values. First, the biases of estimated
Ta were calculated for each 2.5 °C Ta range. Second, three types of
extremely high Ta were defined: the observed Ta was higher than 99,
99.9, and 99.99 percentile of the observed Ta at the same meteorolog-
ical station. Similarly, three types of extremely low Ta were defined:
the observed Ta was lower than the 1, 0.1, and 0.01 percentile of ob-
served Ta at the same meteorological station. The MAE, RMSE, R2,
and bias of the estimated Ta were calculated when the observed Ta ful-
filled the requirement for extreme Ta. Third, the performance of using
the estimated Ta to study the heat and cold waves was analyzed. In this
study, a heat wave event was defined as at least three consecutive days
when Tmax was higher than 90 percentile of observed Tmax in the
same meteorological station from May to September from 2003 to
2012 (Croitoru et al., 2016; Gaitan et al., 2019; Luo and Lau, 2017).
Similarly, a cold wave event was defined as at least three consecutive
days when Tmin was lower than 10 percentile of observed Tmin in
the same meteorological station from November to March from 2003
to 2012 (Gaitan et al., 2019). Heat wave magnitude (HWM) and cold
ination (R2), and bias of the estimated Ta for the EPCmethod and themethod in the
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wave magnitude (CWM) were used to quantify the heat and cold waves,
respectively. HWM (CWM) was defined as the mean Tmax (Tmin) of all
heat (cold) wave events in one year (Croitoru et al., 2016). These in-
dexes were selected because of their suitability for comparing various
methods, whereas other indexes such as the number of heat wave
events in one year are not. The HWM and CWM were calculated using
both observed and estimated Ta values. Next, the MAE, RMSE, R2,
and bias of the estimated HWM and CWM were calculated to assess
the accuracy.

4. Results

4.1. Accuracy of Ta estimation

The EPC method significantly outperformed the method in the litera-
ture (Figs. 4–6). The MAEs of the estimated Tmean, Tmax, and Tmin of
the EPC method were 0.75, 1.01, and 0.99 °C, respectively (Fig. 4). These
Fig. 6. Spatial distribution of MAEs of the estimated Ta f
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were 0.57–0.96 °C (37.4–48.6%) lower than those of the method in the lit-
erature. In addition, the EPC method produced higher R2 and lower MAE,
RMSE, and bias than the method in the literature in nearly all months and
meteorological stations (Figs. 5 and 6). The reasons for the high accuracy
of the EPC method are discussed in detail in Section 5.1.

The accuracy of Tmean was the highest, followed by Tmin and Tmax.
This result is similar to those in the literature (Lu et al., 2018; Vancutsem
et al., 2010; Venter et al., 2020; Yao et al., 2020; Yao et al., 2021a). The rea-
sons are as follows: (1) Tmean is the daily average Ta, and Tmax and Tmin
are instantaneous Ta; and (2) the correlation between nighttime Ts and
Tmin is stronger than between daytime Ts and Tmax (Lin et al., 2016). Sea-
sonally, the MAEs and RMSEs were generally lower in warm months
(e.g., July and August) than those in the cold months, and the R2 values
were also lower in warm months than those in the cold months (Fig. 5).
This is because the Ta range in warm months is smaller than that in cold
months (Li and Zha, 2019a; Yao et al., 2021a). Spatially, the MAEs were
normally lower in plains and higher in mountainous areas (Fig. 6). The
or the EPC method and the method in the literature.
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high MAEs in mountain areas can be attributed to the complex terrain and
low density of meteorological stations in these areas. Furthermore, the
MAEs of a meteorological station in Shandong province (>2.2 °C in all
cases, sole red dot in Fig. 6a) were significantly higher than those of other
meteorological stations (Fig. 6). Further analysis revealed that the terrain
of this area was complex. The elevation of this meteorological station
(1533 m) was significantly higher than that of other neighboring meteoro-
logical stations (generally lower than 200 m).

Notably, the overall biases of the estimated Ta were all close to zero
(>−0.08 °C and <0.08 °C in all cases) for the EPC method and the
method in the literature (Figs. 4 and 5). However, the slopes of the
fitting lines between the observed and estimated Ta were all lower
than 1, consistent with the literature (Chen et al., 2016; Didari et al.,
2016; Didari and Zand-Parsa, 2018; Janatian et al., 2017; Jang et al.,
2014; Li and Zha, 2019a; Li and Zha, 2019b; Lu et al., 2018; Peón
et al., 2014; Yang et al., 2017; Yoo et al., 2018; Zou et al., 2021). There-
fore, we suspected that the Ta estimation would have a large bias and
error when Ta was extremely high or low.

4.2. Accuracy of the estimated extreme Ta

Although the overall biases of the estimated Ta were close to zero
(Figs. 4 and 5), the biases of the estimated Ta differed greatly by Ta range
(Fig. 7). The biases of the estimated Ta were positive (negative) when the
observed Ta was extremely high (low). When the observed Tmax was
lower than −17.5 °C, the bias of the estimated Tmax using the method in
the literature can exceed 7 °C. Additionally, the MAEs and RMSEs of the es-
timated extreme Ta (Fig. 8) were higher than those of the overall MAEs and
RMSEs (Fig. 4). These results suggest that the estimated extreme Ta has a
large bias and error. Furthermore, the more extreme the Ta, the lower the
accuracy (Figs. 7 and 8). Indeed, it is reasonable that the accuracy of the
Fig. 7. Biases of the estimated Ta for the EPC method and the method in the
literature and numbers of samples in different Ta ranges.
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estimated extreme Ta is low. The extreme Ta is generally significantly
higher or lower than the spatiotemporal neighboring Ta and thus difficult
to predict. The large bias of estimated Ta leads to uncertainty when the es-
timated Ta is used for research, especially in fields related to extreme Ta
(e.g., spatiotemporal variations in extreme Ta and its effects on human
health and crop yield). Finally, the absolute values of biases of the
estimated extremely low Ta (>4 °C inmany cases) were significantly higher
than the absolute values of biases of the extremely high Ta (generally
<3 °C). The primary reason was that the number of samples was large
when Ta was high (Fig. 7), and vice versa. Therefore, the relationship
between Ta and the independent variables can be more accurately fitted
when Ta is high.

The EPCmethod can significantly reduce the bias and increase the accu-
racy of the estimated extreme Ta (Table 2, and Figs. 7 and 8). Biases of the
EPC method were approximately 50% lower than those of the method in
the literature (Fig. 7). For example, when the observed Tmean was lower
than −22.5 °C, the biases of the estimated Tmean using the EPC method
and the method in the literature were 1.65 and 3.45 °C, respectively.
When the observed Tmean >99 percentile of the observed Tmean, the
biases of the estimated Tmean for the EPC method and the method in the
literature were 0.75 and 1.70 °C, respectively. Compared with the method
in the literature, the EPC method can reduce the MAE by 0.67–3.66 °C (av-
erage: 1.41 °C, 24.1–60.1%), RMSE by 0.75–3.46 °C (average: 1.49 °C,
22.4–54.2%) and bias by 0.74–4.21 °C (average: 1.61 °C, 37.3–72.9%) of
the estimated extreme Ta (Fig. 8 and Table 2). These results further suggest
that EPC is a robust method for estimating Ta.

4.3. Accuracy of the estimated HWM and CWM

The EPC method produced a satisfactory accuracy for the estimated
HWM and CWM (Table 3). The MAEs of the estimated HWM and CWM of
the EPC method were 0.62 and 0.89 °C, respectively. Comparatively, the
MAEs of the method in the literature were significantly higher than those
of the EPC method (HWM: 1.75 °C; CWM: 2.03 °C). Additionally, it should
be noted that the MAEs and RMSEs of the estimated HWM and CWMusing
the EPC method were lower than the overall MAEs and RMSEs of the esti-
mated Ta. This finding primarily occurs because HWM and CWM are the
multi-day average Ta. The positive and negative errors on different days
can be offset. However, the MAEs and RMSEs of the estimated HWM and
CWM using the method in the literature were close to the overall MAEs
and RMSEs of the estimated Ta. This is because the bias of the method in
the literature is large (Figs. 7 and 8). The positive and negative errors on dif-
ferent days are difficult to offset.

Fig. 9 shows the temporal variations in the observed and estimated Ta
averaged for 1104 meteorological stations in the summer (June, July, and
August) of 2003. The estimated Ta had a positive bias on relatively cold
days and a negative bias on relatively hot days. On relatively hot days, Ta
was significantly higher than Ta on neighboring days. Therefore, Ta on rel-
atively hot days was difficult to predict and had a negative bias. Further-
more, the accuracy of the EPC method was significantly higher than that
of the method in the literature. The MAEs of the averaged estimated Ta
using the EPC and the method in the literature in this period were 0.06
and 0.45 °C, respectively. This phenomenon occurred because the bias of
the EPC method was significantly lower than that of the method in the lit-
erature (Figs. 7 and 8). Therefore, the positive and negative errors of the
EPC method are offset. Finally, the 0.06 °C of MAE was promising, indicat-
ing that the MAE of the estimated spatial average Ta using the EPCmethod
was close to zero. Therefore, the estimated Ta using the EPCmethod can be
used to accurately reveal the regional warming trend and urban heat island
effect.

4.4. Mapping Ta using the EPC method and the method in the literature

The final Ta map was developed using the EPCmethod and the method
in the literature. The spatial and seasonal variations in the estimated Ta
using the EPC method were similar to those of the method in the literature



Fig. 8.MAE, RMSE, R2, and bias of the estimated extreme Ta for the EPC method and the method in the literature.
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(Fig. 10), because the Ta was seasonally averaged. Ta was strongly related
to elevation, latitude, and season. Areas with high elevation (e.g., Taihang
Mountains and Wuyi Mountains) or latitude (e.g., Beijing-Tianjin-Hebei
urban agglomerations) generally have low Ta. Ta was higher in summer
than in winter (December, January, and February). The Tmax was the
highest, followed by Tmean and Tmin. These results were reasonable,
which further demonstrate the reliability of the estimated Ta data and the
EPC method. The developed Ta map provides useful data to multiple re-
search fields such as meteorology and climatology, environmental science
and ecology, and human health and epidemiology.
Table 2
MAE, RMSE, and bias of the estimated extreme Ta reduced by the EPC method relative

>99.99 percentile of observed Ta MAE (°C)
RMSE (°C)
Bias (°C)

>99.9 percentile of observed Ta MAE (°C)
RMSE (°C)
Bias (°C)

>99 percentile of observed Ta MAE (°C)
RMSE (°C)
Bias (°C)

<1 percentile of observed Ta MAE (°C)
RMSE (°C)
Bias (°C)

<0.1 percentile of observed Ta MAE (°C)
RMSE (°C)
Bias (°C)

<0.01 percentile of observed Ta MAE (°C)
RMSE (°C)
Bias (°C)
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5. Discussion

5.1. Strength and limitation of the EPC method

In this study, for estimating Ta, the EPC method significantly
outperformed the method in the literature. The EPC method has a higher
overall accuracy of the estimated Ta than the method in the literature
(Fig. 4). Additionally, the EPC method produced better accuracy of the es-
timated extreme Ta, HWM, and CWM than the method in the literature
(Fig. 8, Tables 2 and 3). The reasons for the high accuracy of the EPC are
to the method in the literature. Percentage reduction is shown in parentheses.

Tmean Tmax Tmin

1.32 (54.9%) 2.29 (60.1%) 1.22 (40.1%)
1.36 (49.3%) 2.31 (54.2%) 1.24 (37.5%)
1.34 (55.8%) 2.37 (62.2%) 1.23 (40.3%)
1.20 (57.2%) 1.66 (57.3%) 1.22 (46.9%)
1.32 (52.8%) 1.80 (51.9%) 1.19 (41.5%)
1.28 (62.1%) 1.82 (63.1%) 1.28 (49.3%)
0.96 (56.1%) 1.27 (56.0%) 0.84 (45.2%)
1.10 (52.5%) 1.48 (52.1%) 0.88 (40.6%)
1.11 (68.1%) 1.45 (65.8%) 0.99 (54.2%)
0.67 (33.2%) 1.50 (51.5%) 0.79 (27.0%)
0.75 (28.9%) 1.71 (45.4%) 0.86 (24.0%)
0.74 (60.2%) 1.74 (72.9%) 0.98 (49.0%)
0.77 (29.4%) 2.10 (45.8%) 0.88 (24.1%)
0.88 (26.6%) 2.28 (41.8%) 1.00 (22.4%)
1.04 (50.6%) 2.61 (61.3%) 1.21 (38.5%)
1.42 (42.0%) 3.66 (54.5%) 1.69 (32.4%)
1.49 (37.2%) 3.46 (46.7%) 1.69 (28.6%)
1.75 (52.6%) 4.21 (62.7%) 1.92 (37.3%)



Table 3
MAE, RMSE, R2, and bias of the estimated HWM and CWM using the EPC method
and the method in the literature.

HWM CWM

EPC method MAE (°C) 0.62 0.89
RMSE (°C) 0.84 1.22
R2 0.81 0.96
Bias (°C) −0.35 0.43

Method in the literature MAE (°C) 1.75 2.03
RMSE (°C) 2.06 2.40
R2 0.66 0.95
Bias (°C) −1.71 1.98
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as follows: First, the relationship between Ta and the independent variables
was fitted, and Ta was predicted by month (step (2) of EPC). This strategy
was used because the relationship between Ta and the independent vari-
ables differed greatly by month. Therefore, using only one fitted relation-
ship to predict Ta for all months would result in large uncertainties.
Second, the EPC method obtains, predicts, and corrects the error of the es-
timated Ta (steps (3)–(6) of EPC). These steps can reduce errors and in-
crease the accuracy of the estimated Ta. As can be seen from Fig. 9, the
estimated Ta using the method in the literature had a positive bias on rela-
tively cold days and a negative bias on relatively hot days. It suggests that
the variation of error has certain regularity and Ta estimated by the Cubist
model is conservative. One possible reason for the conservative estimation
is that the extreme Ta is generally significantly higher (lower) than the spa-
tiotemporal neighboring Ta and thus difficult to predict. The other reason
may be that the model treats extremely high (low) values as outliers. The
Fig. 9. Temporal variations in observed and estimated Ta averaged for 1104
meteorological stations in the summer of 2003.
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EPC method can obtain the positive bias on relatively cold days and nega-
tive bias on relatively hot days by performing step (3) and then predict
and correct the error by performing steps (5) and (6). After correcting the
error, the estimated Ta was closer to the observed Ta (Fig. 9). Therefore,
the EPCmethod had a low error (MAEandRMSE) and bias than themethod
in the literature.

The main limitation of EPC method is that the computing costs are sig-
nificantly higher than those of the method in the literature. The computing
time of the EPC method for training is approximately ten times that of the
method in the literature, primarily because the former uses a tenfold
cross-validation method to obtain the error (step (3) of EPC). Fortunately,
only once is training necessary to predict the Ta for the whole study period.
The computing time of the EPC method for predicting is approximately
twice that of the method in the literature. This is because the EPC method
needs to predict the Ta and error simultaneously (step (5) of EPC). There-
fore, future research should consider the computing costs when using the
EPC method.

5.2. Using the EPC method in research related to extreme ta

Climate change has become a serious problem. Global surface Ta has
been increasing and will continue to increase (Huang et al., 2017; Zeng
et al., 2017). As global warming continues, extreme weather events gradu-
ally increase, which harms human beings and the environment (Chen et al.,
2020; Luo and Lau, 2017; Robine et al., 2008). For example, heat waves in
Europe caused more than 70,000 deaths in the summer of 2003 (Robine
et al., 2008). Chen et al. (2020) found that maize and rice yields were sig-
nificantly affected by extreme Ta in the Yangtze River Basin, China. Accu-
rate, high spatiotemporal resolution Ta data are necessary to accurately
reveal spatiotemporal variations in extreme Ta and its negative impacts.
The EPC method proposed in this study can produce 1 km resolution
daily Ta data with high accuracy. Additionally, this study demonstrated
that the EPC method can produce a satisfactory estimation of the extreme
Ta. Most importantly, the EPC method performs well in practical applica-
tions: the MAEs of the estimated HWM and CWM using the EPC method
were 0.62 °C and 0.89 °C, respectively. Therefore, further research could
use the EPC method to map Ta data and in studies related to extreme Ta.
For example, it can be used to analyze the spatiotemporal variations in
heat and cold waves at a 1 km resolution (Chung et al., 2020). Additionally,
it can be used to study the urban heat island effect and its associated deter-
minants (Yao et al., 2021a). Furthermore, it can be used to map the spatial
distribution of heat health risk (Hu et al., 2017). Using an accurate Ta map
at a resolution of 1 km for these studies is more advanced than using mete-
orological stations, because themeteorological stations are sparsely and un-
evenly distributed (Wang et al., 2015).

The time period of this study is from 2003 to 2012. The estimated Ta
was not validated from a more recent year (e.g. 2020), due to data limita-
tions. Daily Ta data from meteorological stations were available from
1961 to 2014. MODIS version 6.1 MYD11 Ts data were available from
July 2002 to December 2012 when this manuscript was submitted. There-
fore, the time period of this study is from2003 to 2012. The time period can
be extended when longer time series of satellite and meteorological data
are available in the future.

6. Conclusions

In this study, a method called EPC incorporating the Cubist algorithm
was proposed to improve the estimation of extreme Ta, and compared
with method in the literature. The MAEs of the estimated daily Ta using
the EPC method ranged from 0.75–1.01 °C, which were 0.57–0.96 °C
lower than those of the method in the literature. However, the biases of
the estimated Ta using the method in the literature can be as high as
7.096 °C when Ta is extremely low and as low as −3.09 °C when Ta is ex-
tremely high. Compared with the method in the literature, the EPCmethod
can reduce the MAE by 1.41 °C, RMSE by 1.49 °C and bias by 1.61 °C of the
estimated extreme Ta. Additionally, the EPC method produced satisfactory



Fig. 10. Spatial and seasonal variations in estimated Ta using the EPC method and the method in the literature. Spring: March, April, May. Summer: June, July, August.
Autumn: September, October, November. Winter: December, January, February.
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accuracy of the estimated HWM and CWM (MAEs <0.9 °C). The reasons for
the high accuracy of the EPCmethod are as follows: (1) the relationship be-
tween Ta and independent variableswasfitted, and the Tawas predicted by
month; and (2) the EPC method uses an error correction procedure to re-
duce the error and bias.

This paper for the first time studied the phenomenon that the slopes of
the fitting lines between observed and estimated Ta are generally lower
than 1. Additionally, the EPC method was proposed to improve this prob-
lem. Furthermore, the developed 1 km resolution daily Ta map in east
China from 2003 to 2012 using the EPCmethod will be a useful data source
in multiple research fields. Future research could use the estimated Ta data
to analyze the spatiotemporal variations in extreme Ta and the effects of ex-
treme Ta on crop yield and human health.
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