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Abstract—The detection and identification of target pixels such
as certain minerals and man-made objects from hyperspectral
remote sensing images is of great interest for both civilian and
military applications. However, due to the restriction in the spatial
resolution of most airborne or satellite hyperspectral sensors, the
targets often appear as subpixels in the hyperspectral image (HSI).
The observed spectral feature of the desired target pixel (positive
sample) is therefore a mixed signature of the reference target
spectrum and the background pixels spectra (negative samples),
which belong to various land cover classes. In this paper, we pro-
pose a novel supervised metric learning (SML) algorithm, which
can effectively learn a distance metric for hyperspectral target
detection, by which target pixels are easily detected in positive
space while the background pixels are pushed into negative space
as far as possible. The proposed SML algorithm first maximizes
the distance between the positive and negative samples by an
objective function of the supervised distance maximization. Then,
by considering the variety of the background spectral features, we
put a similarity propagation constraint into the SML to simulta-
neously link the target pixels with positive samples, as well as the
background pixels with negative samples, which helps to reject
false alarms in the target detection. Finally, a manifold smoothness
regularization is imposed on the positive samples to preserve their
local geometry in the obtained metric. Based on the public data
sets of mineral detection in an Airborne Visible/Infrared Imaging
Spectrometer image and fabric and vehicle detection in a Hyper-
spectral Mapper image, quantitative comparisons of several HSI
target detection methods, as well as some state-of-the-art metric
learning algorithms, were performed. All the experimental results
demonstrate the effectiveness of the proposed SML algorithm for
hyperspectral target detection.

Index Terms—Dimension reduction, hyperspectral image (HSI),
metric learning, target detection.
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Fig. 1. Illustration of a subpixel target in a mixed pixel of the HSI.

I. INTRODUCTION

HYPERSPECTRAL remote sensing [1] has opened up
new opportunities for analyzing a variety of land cover

materials due to the rich dimensionality on the spectral domain
of each pixel in the hyperspectral image (HSI). Specifically,
hyperspectral remote sensing images, such as the images gath-
ered by the Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) [2] spaceborne sensor and the Hyperspectral Mapper
(HyMap) [3] airborne sensor, are composed of hundreds of indi-
vidual and separate but spatially coregistered gray-level images,
each of which is captured in a contiguous channel wavelength,
with a very high spectral resolution of approximately 10 nm.
As a consequence, an HSI is usually regarded as cube data
because it has two spatial dimensions (width and height) and
a spectral dimension. Since hyperspectral remote sensing can
simultaneously provide image data, which contain both spatial
and spectral information, one of the most important tasks for
HSI applications is to distinguish the few target pixels, such as
certain minerals and man-made objects, from the background
pixels in the HSI [4]. The basic idea for this detection stems
from the fact that the amount of reflectance that varies with
the wavelength is unique for any given material if it has
been sufficiently characterized. In other words, a target has its
representative spectral feature, which can be described as an
l-dimensional feature vector, where l is the number of spectral
channels of the hyperspectral sensor. Although this spectral
feature provides sufficient discriminative information, hyper-
spectral target detection is always a great challenge because the
targets often appear as subpixels in the HSI due to the restriction
in the spatial resolution of most hyperspectral sensors [5], [6].
Therefore, depending on the real land cover classes within each
pixel, a target pixel in the HSI usually appears as a mixed
pixel, which contains both the target material and multiple
background classes, as illustrated in Fig. 1.
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To deal with mixed pixels in HSI analysis, it is widely
accepted that the measured spectrum of a mixed pixel is a
function of the pure spectral features (end-members) of all the
materials in this pixel, with their weighting factors. The stan-
dard technique is the linear mixture model (LMM) [7], which
suggests that the measured spectrum is a linear combination of
the end-members, weighted by their corresponding abundance
fractions, which indicate the proportion of each end-member
present in the mixed pixel. The LMM is easy to implement
and flexible in most conditions. However, as reviewed in [8],
the nonlinear mixture model (NLMM) describes a mixed spec-
trum by considering some more complex combinations of the
component reflectance spectra in the mixture, and often has a
physical meaning in that the radiation is reflected by multiple
bounces in the hyperspectral imaging. For a more comprehen-
sive explanation of the distinctions between the LMM and the
NLMM for HSI spectral unmixing, refer to [9] and [10].

The existing HSI subpixel target detection algorithms in
the remote sensing area mainly focus on formulating specific
observation models for the target and background pixels [11].

1) Spectral-unmixing-based models (structured background
models), most of which are LMM based. These methods
adopt the LMM with various constraints to characterize
the targets and the interfering background, with the con-
sideration of additional random Gaussian sensor noise in
the model [12]. The adaptive matched subspace detector
(AMSD) is such an algorithm that models the target and
background characteristics by the LMM and recognizes
the probable subpixel targets by a statistical hypothesis
test [13]. It should be noted that the LMM has to be
extended into the NLMM in some situations, such as
when the source radiation is multiple reflected before
being collected at the sensor.

2) Statistical-based models (unstructured background mod-
els), such as the adaptive matched filter (AMF) [14], [15]
and the adaptive coherence/cosine estimator [16], [17].
These models assume that the background samples have
specific distributions and maximize the target feature
response while suppressing the response of the unknown
background feature.

3) Hybrid subpixel target detection methods, which formu-
late the background with both structured and unstruc-
tured models. These methods take advantage of the two
kinds of model and generally show better performances,
particularly when dealing with weak targets in complex
backgrounds [18], [19].

However, as aforementioned, all these algorithms follow
certain assumptions, and they can only work well in certain
conditions, e.g., the AMSD is based on the LMM, and the AMF
assumes that the target and background covariance matrices are
identical.

In recent years, machine learning algorithms have been intro-
duced into HSI processing, and it has been suggested that they
can perform well in the applications of dimension reduction
[20], [21], image segmentation [22], [23], and classification
[24], [25]. There have been also some related works on HSI
target detection [26], e.g., kernel-based target detection meth-
ods [27], [28] and sparse-representation-based target detection

methods [29], [30]. However, few studies have been devoted
to a target detection method that is benefited by a distance
metric in the feature space of HSI, by which target pixels are
easily detected in positive space while background pixels are
pushed into negative space as far as possible. In fact, based on
the key innovative idea of metric learning [31], many different
algorithms have been proposed and have been demonstrated to
be effective in dealing with challenging applications in com-
puter vision and pattern recognition, e.g., face recognition [32],
handwritten digit recognition [33], image retrieval [34], object
tracking [35], and gene expression data classification [36]. Ac-
cording to the particular challenges in the HSI target detection
task, the following issues should be properly addressed when
using metric learning for hyperspectral target detection: 1) as
the interested target pixels (positive samples) often appear as
subpixels in the HSI, the observed target pixels spectra might
be similar to the background pixels (negative samples) spectra
in the original feature space; and 2) as the target pixels are
often very limited in number and the background pixels belong
to various land cover classes, which include almost all the
pixels in the HSI [37], the learned distance metric should
remove as many background pixels as possible from the target
pixels.

In this paper, a novel supervised metric learning (SML)
algorithm, which can effectively learn a distance metric for
HSI target detection, is introduced in response to the afore-
mentioned two aspects. As a machine-learning-based approach,
no physically meaningful model is needed. By considering the
spectral features of both negative samples (background pixels)
and positive samples (mixed pixels with the target signature),
the distance metric provided by SML results in the target pixels
being easily detected in positive space while the background
pixels are pushed into negative space as far as possible. Thus,
the target detection measurement can be obtained by the spec-
tral similarity between the test sample and the prior target
feature using the learned distance metric. In particular, the SML
algorithm first maximizes the distance between the positive
and negative samples by a supervised distance maximization.
Then, by considering that the background pixels belong to
various classes, a similarity propagation constraint is added
into the SML to simultaneously link the target pixels with
positive samples, as well as the background pixels with negative
samples, which helps to reduce the false alarm rate. Finally, a
manifold smoothness regularization of all the positive samples
is considered to preserve their local geometry in the obtained
metric.

The rest of this paper is organized as follows. In Section II,
we give a brief review of the metric learning algorithms. We
then provide the detailed explanation of our SML algorithm
for HSI subpixel target detection in Section III. The HSI
target detection experimental results are reported in Section IV,
followed by the conclusion in Section V.

II. RELATED WORKS

We assume that we have the following given data set X =
[x1, . . . ,xn] ∈ Rl×n, in which n is the number of samples and
l is the number of features, with the label information C =
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[c1, . . . , cn]
T , ci ∈ {+1,−1}. Thus, we have the following

similar constraints set Λ and dissimilar constraints set Ω:

Λ : ∀(xi,xj) |ci=cj ∈ Λ (1)

Ω : ∀(xi,xj) |ci �=cj ∈ Ω. (2)

The goal of metric learning is to learn a Mahalanobis-like
distance metric d(xi,xj), by which the distance between xi

and xj can be computed as

d(xi,xj) =
√

(xi − xj)TM(xi − xj). (3)

To ensure that d(xi,xj) is a metric, the learned
Mahalanobis-like matrix M ∈ Rl×l must be symmetric
and positive semidefinite. Note that if M = I , then the
Mahalanobis-like distance is equal to the Euclidean distance. If
M is restricted to be diagonal, then the distance metric is equal
to the Euclidean distance, but the different features are given
different weights. Furthermore, we can find a nonsquare matrix
W ∈ Rl×d (d ≤ l) to jointly perform dimensionality reduction
(DR) and metric learning [38], [39]

d(xi,xj) =
√

(xi − xj)TM(xi − xj)

=

√
(xi − xj)TWWT(xi − xj)

= ‖ WTxi −WTxj ‖ . (4)

Learning such a distance metric M as given in (4) is equiva-
lent to finding a DR transformation of data that replaces each
point xi ∈ Rl with WTxi ∈ Rd and applying the standard
Euclidean distance to the new data [31].

The various different distance metric learning methods usu-
ally learn a specific matrix M (or W ) under the supervision of
constraint sets Λ and Ω, such that the samples from different
classes can be well discriminated. Xing et al. [31] formu-
lated such a problem as a constrained convex programming
algorithm, and the method introduced by Davis et al. [40]
learns the Mahalanobis distance function from an information-
theoretic perspective. Relevant component analysis (RCA) [41]
uses adjustment learning to reduce irrelevant variability in the
data while amplifying relevant variability. Discriminative com-
ponent analysis (DCA) [34] extends RCA by the exploitation
of negative constraints and captures the nonlinear relationships
between data instances with the contextual information. Large
margin nearest neighbor (LMNN) [33] trains the metric with the
goal that the k-nearest neighbors (KNNs) always belong to the
same class while examples from different classes are separated
by a large margin. Neighborhood component analysis (NCA)
[32] learns the distance metric by maximizing a stochastic
variant of the leave-one-out KNNs score on the training set.

III. SML ALGORITHM FOR HSI TARGET DETECTION

Fig. 2 shows the flowchart of the SML algorithm for HSI
target detection. The input items of SML include a set of pos-
itive samples (red points) and negative samples (green points).
The SML algorithm is then performed, the full optimization of

Fig. 2. Flowchart of the SML algorithm for HSI target detection.

which consists of the following three parts: 1) a supervised dis-
tance maximization; 2) a similarity propagation constraint; and
3) a manifold smoothness regularization. Detailed explanations
of these three parts are given in the following discussion. Since
the SML learned distance metric is technically designed to be
beneficial for HSI target detection, the target detection task is
then simply achieved by sorting the samples that are nearest
neighbors of the prior target feature, using the Mahalanobis-
like distance metric in (4).

A. Supervised Distance Maximization

We follow the definitions given in the previous section in
that we have the observed data set X ∈ Rl×n with its label in-
formation C ∈ Rn. Here, n is the number of training samples,
and l is the number of spectral channels in the HSI. We further
denote n+ and n− as the number of positive and negative sam-
ples, respectively; and thus, n = n+ + n−. Similar to [35] and
[42], supervised distance maximization for target detection is
measured by maximizing the average distance between positive
and negative samples while minimizing the average distance
between positive samples in the learned distance metric. By
unifying the preceding two aspects together, we have

argmax
W

⎛
⎜⎜⎜⎝

ci=+1∑
i

cj=−1∑
j

‖WTxi −WTxj ‖2

n+n−

−α

ci=+1∑
i

cj=+1∑
j

Qij‖WTxi −WTxj‖2

n+n+

⎞
⎟⎟⎟⎠ (5)

in which α > 0 is a weighting factor used to control these two
parts; the matrix Q ∈ Rn×n in (5) is introduced from Laplacian
eigenmaps [43] for locality preservation. Thus

Qij = exp(‖ xi − xj‖2/t) (6)

in which the radius parameter t can be experientially set to the
sum of the variance of all the positive samples.
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The supervised distance maximization in (5) finds a metric
distance that is the most discriminative for distinguishing target
pixels from background ones. However, it only tries to max-
imize the average pairwise distances among the positive and
negative samples, and there are no restraints on the negative
and positive samples to deal with the variety of background
spectra and the local geometry of the target manifold space, re-
spectively. We therefore further impose the following similarity
propagation constraint and manifold smoothness regularization
into the SML.

B. Similarity Propagation Constraint

To enable the proposed SML to work well for HSI tar-
get detection, we should give more restraint to each training
sample to further shrink the distances between similar pairs.
In this paper, a similarity propagation constraint is suggested
to simultaneously link the target pixels with positive samples,
as well as the background pixels with negative samples. This
constraint aims to learn an optimal intrinsic similarity matrix
S ∈ Rn×n, which measures the similarities between all the
sample pairs by propagating a strong similarity (defined by the
label information) to all the samples with a weak similarity. A
common way to build the weak similarity of sample pairs is the
KNN-graph-based pairwise connection, which is defined by the
neighborhood indicator matrix G ∈ Rn×n, i.e.,

Gij =

{
1, xj ∈ K(xi)
0, otherwise

(7)

in which Gii| n
i=1 = 0, and K(xi) denotes the sample set of the

KNNs of xi by the Euclidean metric in the whole set. Note
that such a matrix G holds weak (probably correct) similarities
between all the sample pairs since it does not address any
supervised information from the training samples. To build a
strong similarity matrix H ∈ Rn×n, we have

Hij =

{
1, xj ∈ K(xi)|(xi,xj)∈Λ
0, otherwise

(8)

in which K(xi)|(xi,xj)∈Λ finds the KNNs of xi, also by the
Euclidean metric, but only in the similar constraints set Λ.
Again, we have Hii| n

i=1 = 0 in (8).
For the initialization of the expected matrix S, we simply

set S(0) = H and S
(0)
ii | n

i=1 = 1. We then regard the elements

where S
(0)
ij = 1 as original positive energies and try to propa-

gate these energies to the other 0 elements in S(0), following
the paths built in the weak similarity matrix G. The criterion of
this similarity propagation can be formulated as [44]

S
(t+1)
i = (1− γ)S

(0)
i + γ

∑
j

GijS
(t)
i∑

j

Gij
(9)

where S
(t)
i denotes the ith row of matrix S at the tth iteration,

and γ is a parameter in the similarity propagation restricted by
0 < γ < 1, which indicates the relative amount of the informa-

tion from its neighbors and its initial supervised information.
The matrix form of (9) is written as

S(t+1) = (1− γ)S(0) + γPS(t) (10)

in which P = D−1G, as with the well-known transition prob-
ability matrix in the Markov random walk models, and D is a
diagonal matrix whose diagonal elements equal the sum of the
corresponding row elements in G, i.e., Dii =

∑
j Gij .

Since 0 < γ < 1 and the eigenvalues of P are in [−1, 1],
the sequence {S(t)} converges, and it suffices to solve the limit
as [45]

S∗ = lim
t→∞

S(t) = (1− γ)(I − γP )−1S0. (11)

Thus, we can compute S∗ directly without iterations. It is
worth noting that (I − γP )−1 is in fact a graph or a diffusion
kernel [46]. Next, we can obtain the expected similarity matrix
S by symmetrizing S∗ and removing the small similarity
values, i.e.,

S =

(
S∗ + S∗T

2

)
≥ϕ

. (12)

In (12), we zero out the elements of S, whose absolute values
are smaller than the threshold ϕ.

By the aforementioned similarity matrix S, we have the
similarity propagation constraint

argmin
W

⎛
⎜⎜⎝
∑
i

∑
j

Sij

∥∥WTxi −WTxj

∥∥2
n2

⎞
⎟⎟⎠ . (13)

Subsequently, by adding (13) into (5) with a weighting factor
β > 0, we have

argmax
W

⎛
⎜⎜⎜⎝

ci=+1∑
i

cj=−1∑
j

‖WTxi −WTxj‖2

n+n−

− α

ci=+1∑
i

cj=+1∑
j

Qij‖WTxi −WTxj‖2

n+n+

−β

∑
i

∑
j

Sij‖WTxi −WTxj‖2

n2

⎞
⎟⎠ . (14)

In order to simplify the optimization (14), we build a unified
matrix T ∈ Rn×n with the same size as the similarity matrix
S, each element of which encodes a pairwise weighting factor
provided in (14). Matrix T can be easily obtained by consider-
ing separately for each part and then putting them together as a
whole, i.e.,

T ij =

⎧⎨
⎩

−βSij/n
2 − αQij/n

+2, ci = cj = +1
−βSij/n

2, ci = cj = −1
−βSij/n

2 + 1/n+n−, cicj = −1.
(15)
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We then rewrite (14) as

argmax
W

⎛
⎝∑

i

∑
j

T ij‖WTxi −WTxj‖2
⎞
⎠

= argmax
W

tr
[
WTX(R− T )XTW

]

= argmax
W

tr
(
WTXLXTW

)

= argmax
W

tr(WTEW ) (16)

in which R is a diagonal matrix whose diagonal elements are
equal to the sums of the corresponding row elements in T ,
i.e., Rii =

∑
j T ij , and L = R− T is known as the graph

Laplacian [43]. In order to further reduce (16), we denote
E = XLXT.

C. Manifold Smoothness Regularization

In the HSI subpixel target detection task, since the target
pixels are mixed with the background pixels from various
classes, the input positive samples will be usually embedded
in a compact subspace, i.e., a low-dimensional manifold, con-
sidering the spectral mixture, and thus, we expect the learned
manifold of these positive samples to be as smooth as possible.
In the proposed SML, the manifold smoothness of all the
positive samples is considered as an additional regularization to
preserve their local geometry in the obtained metric [47], [48].
The manifold smoothness can be quantitatively measured by
the reconstruction error of the famous locally linear embedding
(LLE) algorithm [49]. In this work, we use a linear version of
LLE to build the minimization of the reconstruction error for
the positive samples. Following the aforementioned definitions,
we denote the positive sample set as X+ = [x+

1 , . . . ,x
+
n+ ] ∈

Rl×n+
. For each positive sample x+

i , the reconstruction error
is computed by the linear combination of the other samples
x+
j |j �=i with weight Aij |j �=i, respectively. Thus

argmin
Aij

∥∥∥∥∥∥x
+
i −

∑
j �=i

Aijx
+
j

∥∥∥∥∥∥
2

(17)

where A ∈ Rn+×n+
, and Aii = 0. By the weight matrix given

above, we minimize the sum of the reconstruction errors of all
the positive samples in the measured space as

argmin
W

∑
i

∥∥∥∥∥∥W
Tx+

i −
∑
j �=i

AijW
Tx+

j

∥∥∥∥∥∥
2

. (18)

We can further rewrite (18) as follows:

argmin
W

tr
[
WTX+(I −AT)(I −AT)TX+TW

]

= argmin
W

tr
[
WTBW

]
(19)

where B = X+(I −AT)(I −AT)TX+T.
Finally, by combining the supervised distance maximization

with the similarity propagation constraint introduced in (16)

and the manifold smoothness regularization provided in (19),
we have the final optimization of SML, i.e.,

argmin
W

tr
[
WTEW − μ(WTBW )

]
= argmin

W
tr
[
WT(E − μB)W

]
= argmin

W
tr(WTZW ) (20)

in which μ is a weighting factor, and Z = E − μB. Equation
(20) is famous in graph embedding methods [50], [51] and is
often enforced by a constraint in (21), which helps to remove
the arbitrary scaling factor and uniquely determines W , i.e.,

argmin
W

tr(WTZW ) s.t. WWT = I. (21)

The solution of (21) is given by the top d eigenvectors associ-
ated with the d smallest eigenvalues of the standard eigenvalue
decomposition

Zv = rv. (22)

IV. EXPERIMENTS

The experiments for HSI target detection are implemented on
two public data sets.

1) An AVIRIS image, which covers the lunar crater volcanic
field (LCVF) in Northern Nye County, NV, USA. This
data set is public and is available at the National Aero-
nautics and Space Administration website. Considered as
a standard data set in HSI analysis, extensive research
work has been undertaken in this area [52], [53]. The
full spatial size of the LCVF data set is 6955 lines, with
781 samples for each line. In our experiment, we use
a subimage with a size of 400 × 400 pixels, the land
cover types of which have been previously investigated
and comprise five main land cover classes, namely, red
oxidized basaltic cinders, rhyolite, playa (dry lakebed),
shade, and vegetation. We then implant the almandine
spectrum into the image to simulate the subpixel targets
for detection. The spatial resolution of the image is ap-
proximately 20 m, and there are 224 spectral channels
from 0.4 to 2.5 μm.

2) A HyMap image, which was captured at the location of
the small town of Cook City, MT, USA, on July 4, 2006.
This image is a part of the Target Detection Test project
[54] published by the Rochester Institute of Technology
(RIT), Rochester, NY, USA, to serve as a standard data
set in HSI target detection. This data set project is also
equipped with the exact locations and spectral library files
(SPL) of all the desired targets. The full image size is 280×
800 pixels, with 126 spectral channels in the visible-to-
near infrared (VNIR)–short wave infrared (SWIR) range.
The ground spatial resolution of the HSI is about 3 m, and
the spectral resolution is about 14 nm.

A. AVIRIS Experiment

The LCVF image scene used in our experiment is shown in
Fig. 3(a). In this HSI scene, we aim to detect the implanted
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Fig. 3. (a) AVIRIS data cube of the LCVF. (b) Implanted target locations in
the AVIRIS image.

Fig. 4. (a) Implanted pure target spectrum and some representative back-
ground samples spectra. (b) Locations of the background samples given in (a).

TABLE I
DETAILS OF THE IMPLANTED TARGET PANELS IN FIG. 3

subpixel targets with different implanted fractions. The target
of interest is a mineral spectra named almandine, and we
obtained its standard spectrum from the Environment for Visu-
alizing Images spectral library (U.S. Geological Survey). The
spectral range of the pure target spectrum is from 0.39510 to
2.56000 μm, with a spectral resolution of 0.002 μm. Therefore,
in order to make it consistent with the AVIRIS data cube,
we rescale the target spectra to the image range and resample
it according to the HSI wavelength. The adopted pure target
spectrum and some representative background spectral curves
are shown in Fig. 4(a), and the locations of the background
pixels are highlighted in Fig. 4(b). Then, in order to simulate
a series of subpixels, to make the quantitative analysis possible,
15 target panels are implanted into the image, the locations of
which are given in Fig. 3(b).

The added target panels have the same size, i.e., two pixels
for each target panel, and the detailed coordinates of all 30
implanted target pixels are given in Table I. Note that all the
implanted target pixels are mixed pixels, and each spectrum
x is mixed with the prior target spectrum t and the original

background spectra b at the implanted locations, respectively,
by both the LMM (23) and a representative NLMM (24), to
evaluate the algorithms performance in subpixel target detec-
tion. Thus

x = pt+ (1− p)b (23)

x =

√
pt2 + (1− p)b2 (24)

in which the implanted fraction p varies from 10% to 2%, as
indicated in Table I.

1) Linear Implanted Target Detection Results: We now
evaluate the subpixel target detection performance of the pro-
posed algorithm. The SML algorithm requires training samples
to learn the distance metric; however, in the general hyper-
spectral target detection task, only the pure target spectrum is
available as prior information. Thus, in this paper, we propose
to generate the training samples for SML as follows: 1) for
the negative samples, we randomly select a certain number of
pixels from the HSI to represent the different background land
cover classes, and we then set the number of negative samples
as [10, 20, 30, 40, 50] to explore its effect on the detection
accuracy; and 2) for the positive samples, we mix the aforemen-
tioned negative samples with the prior target spectrum, linearly
or nonlinearly, by a fixed fraction of p = 0.1, to simulate the
various subpixel targets as the positive samples for the SML
algorithm. Hence, the number of positive samples is equal to the
number of negative samples in our experiments. Note that there
are five parameters in the SML algorithm, which we should
predefine as inputs. To address this issue, we propose to specif-
ically determine their values as follows: We experimentally
set parameter α to 1 in the supervised distance maximization
term and set parameter γ to 0.9 in the similarity propagation
constraint. The radius parameter t is set to the sum of the
variance of all the positive samples, as aforementioned. The
regularization parameters β and μ are data dependent, and thus,
we have to optimize them by twofold cross-validation on the
training samples. Empirically, these two parameters are usually
chosen as very small values for SML; in our experiments, they
are tuned by the range of β, μ ∈ 10[−6,−5,...,−2].

For the linear implanted targets, Fig. 5(a)–(e) shows the
receiver operating characteristic (ROC) [55] curves of the pro-
posed algorithm with an increasing number of negative samples
from 10 to 50. It is clear that, when the number of negative sam-
ples is low, the target detection performance is poor, because the
SML algorithm requires more negative samples, which can rep-
resent the various background land cover classes in HSI to learn
a better distance metric for discrimination. As a result, the ROC
curves improve as the number of negative samples increases, as
shown in Fig. 5(b) and (c). When the number of negative sam-
ples is increased to a larger value, the target detection results
achieve a stable performance. Fig. 5(a)–(e) also empirically
show the effect of the similarity propagation constraint (13) and
the manifold smoothness regularization (19). In these figures,
the solid lines indicate the ROC curves of the proposed SML,
whereas the dashed lines give the performance of the distance
metric learned by supervised distance maximization (SDM),
i.e., the optimization suggested in (5). It is shown that the
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Fig. 5. (a)–(e) ROC curves of the SML and SDM algorithms with increasing numbers of negative samples (from 10 to 50).

Fig. 6. Three-dimensional target detection test statistic plots and 1-D transect
plots of (a) AMF, (b) CEM, (c) DCA, (d) LMNN, (e) NCA, and (f) SML in the
linear implanted target experiment.

proposed SML outperforms SDM in all the ROC curves, which
confirms the effectiveness of the recommended regularizations.

We then show the target detection results of the proposed
SML compared with some of the other state-of-the-art tech-
nologies on the AVIRIS data set, also for the linear implanted
targets. The AMF [17], constrained energy minimization
(CEM) [52], DCA [34], LMNN [33], and NCA [32] algorithms
are applied as the comparisons in the experiment. Among these
algorithms, AMF and CEM are effective HSI subpixel target
detection algorithms that only need the desired target spectrum
as input, whereas DCA, LMNN, and NCA are also distance
metric learning algorithms that require a set of training samples.
Thus, we adopt the same training samples as SML, with the
number of negative samples being 30, to learn the Mahalanobis-
like distance metric for these four metric learning approaches.

Fig. 6(a)–(f) show the 3-D target detection test statistic plots
of all the aforementioned algorithms. For AMF and CEM, we
directly show the algorithm output value as the test statistic
for each pixel in Fig. 6(a) and (b), whereas for the latter
four distance metric learning algorithms, the target detection
results are measured by the distance of each pixel spectrum to
the prior target spectrum using the learned Mahalanobis-like
distance metric. In order to unify the presentation, we show the
reciprocal of the distance as the test statistic in Fig. 6(c)–(f).
Thus, as shown in Fig. 6, the higher test statistic indicates a
higher level of probability that the desired target presents at a
certain pixel and vice versa. From these test statistic plots, we

can see that the target locations are obvious in the top three
lines of the target panels (implanted fractions are no less than
6%) for all the algorithms; however, when the abundance of
the target in a mixed pixel is less than 6%, e.g., the bottom
two lines of the target panels, which can be hardly observed
in most of the algorithms, the separability between the target
and the background pixels is weak. Among these figures, the
proposed SML suppresses the background pixels to a slightly
lower range, and the target pixels can be easily recognized. It
should be emphasized that, although the AMF algorithm can
suppress the background pixels to an even lower value, some of
the target pixels are not clear enough, and the last line of the
target panels (2% implanted fraction), in particular, is totally
missed in the detection.

To make the aforementioned target–background separability
analysis even clearer, we also show the 1-D transect plots of all
the algorithms in Fig. 6(a)–(f). These plots are the transects of
sample 200 in the 3-D target detection test statistic plots of all
the algorithms, respectively, each of which has five implanted
target pixels at the line indices of 60, 120, 180, 240, and 300.
As aforementioned, a higher test statistic value indicates a
higher level of probability that the desired target presents at a
certain pixel. These 1-D transect plots further illustrate that only
AMF, CEM, and the proposed SML algorithms can suppress the
background pixels to a low and steady range; furthermore, the
expected peak in the transect plot of the target pixel at line 300
(2% implanted fraction) can be hardly seen in Fig. 6(a), but can
be observed in Fig. 6(f), which suggests that SML can reveal
better separability between the target and background pixels.

To obtain the final target detection map, as shown in Fig. 2,
threshold-based binary segmentation technology is performed
in Fig. 6(a)–(f). Specifically, all the pixels in the 3-D test
statistic plot that are higher than a certain threshold are consid-
ered as a desired target, whereas the other pixels are rejected
as background pixels. As a result, the target detection rate
(TRR) and its associated false alarm rate (FAR) are closely
related to the chosen threshold. Here, we again use ROC curves
to comprehensively evaluate the final detection performances,
which are obtained by computing the TRR versus FAR with the
varied thresholds, as we reported in Fig. 5(a)–(e). The algorithm
with the best performance is indicated by a curve that is nearest
to the upper left of the figure, which indicates the highest TRR
under the same FAR. Fig. 7(a) shows the target detection ROC
curves of all the reference algorithms in the linear implanted
target experiment. These ROC curves demonstrate that the SML
algorithm achieves a superior performance when compared
with the other algorithms for HSI subpixel target detection. The
other important evaluation index for target detection is the FAR
at TRR = 100%, which is plotted in Fig. 7(b). These results
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Fig. 7. (a) ROC curves and (b) FAR under 100% detection in the linear
implanted target experiment.

Fig. 8. Three-dimensional target detection test statistic plots and 1-D transect
plots of (a) AMF, (b) CEM, (c) DCA, (d) LMNN, (e) NCA, and (f) SML in the
nonlinear implanted target experiment.

Fig. 9. (a) ROC curves and (b) FAR under 100% detection in the nonlinear
implanted target experiment.

also suggest that the proposed SML algorithm results in the
lowest FAR when all the target pixels have been recognized.

2) Nonlinear Implanted Target Detection Results: The HSI
target recognition results in the nonlinear implanted target
experiment are similar to the linear condition. The 3-D target
detection test statistic plots and the 1-D target detection test
statistic transect plots of sample 200 are shown in Fig. 8(a)–(f),
respectively. These test statistic plots indicate the outstanding
target–background separability of the proposed SML when
compared with the other methods. Based on the test statistic
plots in Fig. 8(a)–(f), the target detection ROC curves of all the
algorithms are shown in Fig. 9(a), in which the curve of SML
is clearly in the upper-left location in the figure. In this curve,

Fig. 10. HyMap data cube of the RIT project.

the FAR is reduced to the 10-4 level when the TRR is at 90%.
According to the experimental results reported here, both the
linear and nonlinear implanted target experiments suggest that
the proposed SML is an effective approach for HSI subpixel
target detection.

B. HyMap Experiment

Fig. 10 shows the HyMap data cube of the RIT project. In this
data project, since both the radiance and the scaled reflectance
version of the HSI are available, we use the scaled reflectance
image and rescale the whole image by a reflectance factor of
10 000 to the standard reflectance image. This HSI scene is
airborne data, and the sensor was flown at approximately 1.4 km
above the terrain, yielding a 3-m ground spatial resolution. Thus,
the main background land cover classes can be manually inter-
preted, and comprise roof, road, soil, grass, tree, and shadow,
as shown in Fig. 10.

In this hyperspectral target detection image, several fabric
panels and vehicles of various sizes are deployed as targets.
Details of these targets are listed in Table II. As the project
provides the target size, we can infer that fabrics F1 and F2
(3 m × 3 m) are nearly a full pixel, whereas all the other
fabric targets are smaller than a pixel and therefore occupy
subpixels in the HyMap image. As regards the three vehicle
targets, they occupy, at most, one or two pixels, which will
also appear as subpixels in the HSI, as shown in Table II. In
summary, all the subpixel targets in the HSI are visually difficult
to recognize, and the only information we can use comes from
the discriminative information brought about by the spectral
signature.

The prior spectrum of each target is obtained and prepro-
cessed by the project-equipped SPL files. The SPL spectra were
collected in the field using an Analytical Spectral Device, i.e.,
a FieldSpec Pro field spectrometer (note that the SPL were not
measured in the air by the HyMap sensor), which can measure
the reflectance spectra from 350 to 2500 nm, with approxi-
mately 1-nm spectral resolution. Then, by rescaling the SPL
spectra to the true reflectance data (according to its reflectance
factor of 100) and resampling the SPL spectra according to
the HSI wavelength, we obtain the prior target spectra for the
HSI target detection, as given in Fig. 11(a) and (b). For the
distance metric learning algorithms, we manually select ten
negative samples that represent the different background land
cover classes in the HyMap image. The negative samples are
shown in Fig. 12(a), and their spectral curves are shown in
Fig. 12(b). We then generate the positive samples by the same
approach used for the AVIRIS data set.
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TABLE II
LIST OF THE TARGETS IN THE HYMAP SELF-TEST DATA SET

Fig. 11. Prior spectral signatures of all the desired targets after preprocessing.
(a) Fabrics F1–F4. (b) Vehicles V1–V3.

Fig. 12. Selected negative (a) sample locations and (b) spectra for the metric
learning algorithms in the HyMap data set.

The HyMap image target detection results for all the methods
are listed in Table III, and the detailed parameter settings are
provided in Table IV. Since it is a real-world HSI scene and
there is a unique true location for each target, we compare the

TABLE III
TARGET DETECTION FARS FOR THE HYMAP DATA SET

TABLE IV
PARAMETER SETTINGS OF THE SML ALGORITHM IN TABLE III

target detection FARs of the six algorithms in Table III. The
FAR is defined as the number of pixels that have a test statistic
value equal to or lower than the target pixel value, divided by
the total number of pixels in the HSI (i.e., 224 000 in the HSI
we analyzed). It is evident from Table III that the proposed SML
algorithm gives a superior performance for all the targets in the
HyMap experiment.

V. CONCLUSION

In order to deal with the challenge of hyperspectral remote
sensing image subpixel target detection, we have proposed a
novel SML algorithm, which is based on a machine learn-
ing perspective. The SML algorithm learns a distance metric
for the hyperspectral target detection that leads to effective
target–background separability by the optimization of three
parts: 1) a supervised distance maximization, which maximizes
the average distance between the positive and negative sam-
ples; 2) a similarity propagation constraint, which simulta-
neously links target pixels with positive samples, as well as
the background pixels with negative samples, which helps to
reject the false alarms in target detection; and 3) a manifold
smoothness regularization, which preserves the local geometry
of the positive samples in the obtained metric. Furthermore,
the solution of SML can be simply obtained by implementing
the standard eigenvalue decomposition command. Experiments
with HSI subpixel target detection using public data sets con-
firm the superior performance of our algorithm. Compared with
the effective HSI subpixel target detection algorithms AMF
and CEM, as well as some other well-known distance metric
learning methods, in mineral detection in an AVIRIS image
and fabric and vehicle detection in a HyMap image, our SML
algorithm achieves the best results in the target–background
separability analysis, ROC curve statistics, and FAR evaluation.
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